“Contrary to common understandings, science is not always about ‘plain and simple facts’. …What better lesson might one offer on the first day of a biology class—to teach about science and to promote the value of asking questions as a part of science” (American Biology Teacher 79:510). So argued Douglas Allchin, philosopher, science educator and Resident Fellow of the Minnesota Center for Philosophy of Science (MCPS). We agree and endeavor to bring together historians, philosophers, scientists, and other scholars to better comprehend how the sciences work and promote the value of asking questions about what implications follow from scientific practices and findings. At the start of this new academic year, we offer a glimpse of some activities and accolades that help us achieve these goals. For more details, visit us online (www.mcps.umn.edu).

Curious about the work of Resident Fellow Douglas Allchin (quoted above)? Check out his new book, Sacred Bovines: The Ironies of Misplaced Assumptions in Biology, published by Oxford University Press. You also can find chapters from the book online here: http://sacredbovines.net/
As part of the grant project *From Biological Practice to Scientific Metaphysics*, Alan Love gave a public lecture on “Chance, Evolution, and the Burgess Shale” at the Whyte Museum in Banff, Alberta, Canada.

Evolvability is a popular term in biology, but means very different things to different people. For some, it refers to the ability to predict the short-term ability to respond to selection. To others it is the ability to produce genetic variation that allows longer-term evolution. Finally, some treat it as those properties of genetic systems that allow the large evolutionary changes known as macroevolution. I will discuss two big questions at each of these levels. First, how should we go about measuring each of these types of evolvability? Second, is natural selection responsible for the existence or degree of evolvability? Or is evolvability an accidental or unavoidable property of biological systems shaped only indirectly by natural selection? My own work on fly wings suggest that a surprising correspondence between evolvability at different time-scales, and that evolvability may be an evolved property, and not just an entertaining accident.