Minnesota Studies in the
PHILOSOPHY OF SCIENCE

HERBERT FEIGL, FOUNDING EDITOR

VOLUME X

Testing Scientific Theories

EDITED BY

JOHN EARMAN

UNIVERSITY OF MINNESOTA PRESS, MINNEAPOLIS
Preface

Progress in philosophy is often hard to detect—perhaps, the cynic will urge, because it is often non-existent. However, I submit that the volumes of this series demonstrate a steady advance in our understanding of the structure, the function, and the testing and confirmation of scientific theories. The last mentioned topic was the subject of a Center research conference held in June of 1980; many of the papers of the present volume arose from that conference. The focus for the conference was provided by Clark Glymour’s *Theory and Evidence*. The negative thesis of Glymour’s book is that the two most widely discussed accounts of the methodology of theory testing—hypothetico-deductivism and Bayesianism—are flawed, the latter seriously, the former irremediably. Hempel’s notion of instance confirmation comes closer to capturing the sorts of structural relations between evidence and hypothesis which, by Glymour’s lights, lies at the heart of theory testing. But Hempel’s original account was too narrow in not permitting hypotheses stated in the theoretical language to be confirmed by evidence stated in the observational language. Glymour proposed to remedy this defect with the ingenious idea of ‘bootstrapping, which, with some false modesty, he attributes to Reichenbach, Weyl, and others: the basic relation of confirmation is three-place (E confirms H relative to T) and auxiliary assumptions drawn from T may be used in deducing instances of H from E.

As the papers in the first section indicate, the bootstraps may have to be shortened; Edidin and van Fraassen, for example, argue that the hypothesis under test need not and should not be used as an auxiliary. Some Bayesians remain unfazed by Glymour’s criticisms, while others have been led to abandon the assumption of logical omniscience, implicit in most Bayesian learning models, in order to overcome Glymour’s ‘problem
of old evidence.' Glymour, while still rejecting the 'never-never land'
approach of orthodox Bayesianism, has moved to consider how to combine
bootstrapping relations with partial knowledge of probabilities; the appro-
priate tool turns out to be the belief functions developed by Glen Schafer.
It is thus heartening to be able to report that the various opposing camps
learned from each other. I like to think that the interactions initiated by our
conference contributed to this learning process.

All is not bootstrapping and Bayesianism. The volume also contains still
other accounts of the methodology of theory testing. In addition, there are
some valuable historical case studies against which the theories of method-
ology can be tested. And there are some timely discussions of the problems
of testing psychoanalytic hypotheses and hypotheses about the complete-
ness of the fossil record. In short, enough new ideas are germinated in this
collection that I am confident in predicting that philosophers of science will
reap the harvest for years to come.

While this volume was in preparation, Grover Maxwell left us to struggle
on with the problems of philosophy of science without the benefit of his
always gentle and insightful guidance. The editor and authors join in
affectionately dedicating the volume to Grover’s memory.

John Earman
Contents

I. Glymour's Bootstrapping Theory of Confirmation 1
 Bas C. van Fraassen, “Theory Comparison and Relevant Evidence” 27
 Aron Edidin, “Bootstrapping without Bootstraps” 43
 Paul Horwich, “Explanations of Irrelevance” 55

II. The Bayesian Perspective and the Problem of Old Evidence 67
 Roger Rosenkrantz, “Why Glymour Is a Bayesian” 69
 Daniel Garber, “Old Evidence and Logical Omniscience in Bayesian Confirmation Theory” 99
 Richard Jeffrey, “Bayesianism with a Human Face” 133
 Brian Skyrms, “Three Ways to Give a Probability Assignment a Memory” 157

III. Evidence and Explanation 163
 Bas C. van Fraassen, “Glymour on Evidence and Explanation” 165

IV. Historical Case Studies 177
 Ronald Laymon, “Newton’s Demonstration of Universal Gravitation and Philosophical Theories of Confirmation” 179
 Michael R. Gardner, “Realism and Instrumentalism in Pre-Newtonian Astronomy” 201
V. Some Alternative Views on Testing Theories

Ronald N. Giere, "Testing Theoretical Hypotheses" 269
Henry Kyburg, "The Deductive Model: Does It Have Instances?" 299

VI. Testing Particular Theories

Adolf Grünbaum, "Retrospective vs. Prospective Testing of Aetiological Hypotheses in Freudian Theory" 315
Paul E. Meehl, "Subjectivity in Psychoanalytic Inference: The Nagging Persistence of Wilhelm Fliess’s Achensee Question" 349
Paul E. Meehl, "Consistency Tests in Estimating the Completeness of the Fossil Record: A Neo-Popperian Approach to Statistical Paleontology" 413

Author Index 477

Subject Index 481
I. GLYMOUR’S BOOTSTRAPPING THEORY OF CONFIRMATION
This page intentionally left blank
INDEXES
This page intentionally left blank
Author Index

Ackerman, N., 356
Adrastus of Aphrodisius, 212
Agassiz, L., 416
Allers, R., 409
Arago, F., 280, 292
Aristotle, 204, 205, 206, 207, 212, 254, 271, 273, 368, 395
Averroes, 212

Bacon, F., 276, 320
Bayes, T., 134
Beth, E. W., 27
Biot, J. B., 280, 284
Bolker, E., 138
Boole, G., 140
Boyd, R., 259-262 passim
Brahe, T., 80, 243, 244, 255, 257, 258
Brentano, F., 377
Breuer, J., 354
Buchdahl, G., 269

Calder, N., 94
Callipus, 205
Campbell, N. R., 394
Carnap, R., 18, 134, 155, 235, 299, 300, 372, 373, 390, 393
Cartwright, N., 39, 40
Christensen, D., 5, 7
Clavius, C., 241, 242, 252, 274
Clifford, W. K., 389
Colby, K. M., 358
Cooper, A. M., 318
Copernicus, N., 75, 76, 79, 80, 84, 101, 202-258 passim

Cornford, F., 204
Cotes, R., 190
Cuvier, G., 416
Dalton, J., 32
Darwin, C., 413
de Finetti, B., 138-155 passim
Delisle, J. N., 285, 286
Dempster, A., 5, 20
Descartes, R., 221, 274
Deutsch, H., 356
de Virduno, B., 212
Dewar, D., 424, 442, 455, 456, 462, 468
Diaconis, P., 135
Dobzhansky, T., 415, 416
Dreyer, J. L., 208
Duhem, P., 184, 187, 188, 192, 224, 249
Dumphy, B., 381
Eddington, A., 81, 395
Eddin, A., 5, 17, 55, 56
Einstein, A., 33, 78, 81, 83, 84, 85, 102, 103, 217
Eisenberg, L., 334
Eldrege, M., 416
Ellis, A., 354, 358
Etchemendy, J., 133, 150
Eudoxus, 204, 205, 226
Eysenck, H., 316, 319, 326
Fenichel, O., 351
Feyerabend, P., 269, 372, 386, 394, 399
Field, H., 18
Finetti, B. de. See de Finetti, B.
Fisher, R. A., 88
Fisher, S., 326
Fitzgerald, G. F., 84
Flamsteed, J., 188
Flüss, W., 349, 350, 352, 354, 377, 410
Fraassen, B. C. van. See van Fraassen, B. C.
Franklin, B., 34
Fresnel, A., 280-294 passim
Freud, A., 354
Freud, S., 315-384 passim, 397, 399, 404
Galileo, 221, 222, 232, 372
Garber, D., 85, 133, 146, 147, 149, 150
Gardner, M., 27, 32, 84
Gingerich, O., 214, 215, 233, 234, 235, 236
Glymour, Clark, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 43, 45, 46, 47, 48, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 69, 70, 71, 72, 73, 74, 80, 81, 82, 83, 85, 88, 91, 93, 94, 95, 96, 99, 101, 102, 103, 112, 114, 123, 124, 125, 126, 127, 133, 134, 137, 145, 154, 165, 166, 168, 169, 170, 171, 172, 173, 174, 175, 176, 180, 183, 184, 185, 187, 188, 189, 190, 192, 195, 196, 224, 225, 227, 228, 229, 231, 232, 253, 255, 262, 299, 300, 305, 309, 316, 317, 319, 322, 323, 326, 327, 330 (mentioned passim)
Goldschmidt, R. B. G., 415, 416
Good, I. J., 76, 100, 142, 143
Goodman, N., 87
Goring, C., 361
Gould, S. J., 416
Greenberg, R. P., 326
Hacking, I., 133
Hailperin, T., 140
Hanson, N. R., 269
Harman, G., 36
Hempel, C. G., 28, 44, 169, 376
Herapath, J., 32
Hesse, M., 303
Heyerdahl, T., 89, 90, 91
Hooke, R., 179, 279
Horst, P., 467
Hull, C. L., 427
Hume, D., 271
Huygens, C., 274, 276, 279
James, W., 389
Janus, S., 334
Jeffreys, H., 82
Jevons, W. S., 275
Jones, E., 318
Kelly, K., 5
Kepler, J., 62, 80, 213, 248-261 passim
Keynes, J. M., 134, 275, 276, 284, 285
Kneale, W., 77
Koch, R., 322
Kohut, H., 319, 328
Kolmogorov, A., 135, 136, 140
Kordig, C. R., 394
Koyré, A., 215, 251
Kripke, S., 170
Kuhn, T., 215, 220, 221, 227, 228, 250, 269, 386, 394, 399
Kyburg, H. Jr., 269
Lakatos, I., 73, 79, 84, 215, 216, 217, 218, 220, 221, 269, 276, 299, 300, 371, 372
Lanczos, C., 78
Laplace, P. S., 279, 280, 285, 291
Laudan, L. 248
Leeuwenhoek, J. van. See van Leeuwenhoek, J.
Leibniz, G. W., 274
Leo, J., 334
Levi, I., 133, 139, 141, 168, 269
Lewis, D., 133, 149, 150, 151
Lexis, W., 447
Lorentz, H. A., 81, 83, 84, 195
Luborsky, L., 319
Lyell, C., 458
Magini, G. A., 253
Mallory, G. H. L., 374
Marmor, J., 351, 352
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mastlin, M.</td>
<td>248, 251</td>
</tr>
<tr>
<td>Maxwell, G.</td>
<td>360</td>
</tr>
<tr>
<td>Melanchthon, P.</td>
<td>237, 238</td>
</tr>
<tr>
<td>Mellor, D. H.</td>
<td>138</td>
</tr>
<tr>
<td>Meyer, A.</td>
<td>371</td>
</tr>
<tr>
<td>Michels, R.</td>
<td>318</td>
</tr>
<tr>
<td>Mill, J. S.</td>
<td>275, 276, 284, 285, 320</td>
</tr>
<tr>
<td>Miller, D.</td>
<td>361</td>
</tr>
<tr>
<td>Miller, D. C.</td>
<td>193, 394</td>
</tr>
<tr>
<td>Musgrave, A. E.</td>
<td>276</td>
</tr>
<tr>
<td>Nagel, E.</td>
<td>234, 235</td>
</tr>
<tr>
<td>Newton, I.</td>
<td>95, 101, 147, 148, 152, 179-196 passim, 242, 279, 316</td>
</tr>
<tr>
<td>Normore, C.</td>
<td>133, 150</td>
</tr>
<tr>
<td>Osiander, A.</td>
<td>232, 235, 236, 245, 248, 249, 252</td>
</tr>
<tr>
<td>Ostwald, W.</td>
<td>9</td>
</tr>
<tr>
<td>Pauling, L.</td>
<td>78</td>
</tr>
<tr>
<td>Peirce, C. S.</td>
<td>275, 276, 284, 285, 293</td>
</tr>
<tr>
<td>Pemberton, H.</td>
<td>185, 187</td>
</tr>
<tr>
<td>Perrin, J. B.</td>
<td>9</td>
</tr>
<tr>
<td>Peucer, C.</td>
<td>238</td>
</tr>
<tr>
<td>Plato</td>
<td>202, 203, 204, 206, 251, 422</td>
</tr>
<tr>
<td>Pliny</td>
<td>395</td>
</tr>
<tr>
<td>Poincaré, H.</td>
<td>81</td>
</tr>
<tr>
<td>Poisson, S. D.</td>
<td>280, 282, 286</td>
</tr>
<tr>
<td>Pontano, G.</td>
<td>211</td>
</tr>
<tr>
<td>Ptolemaeus</td>
<td>84, 202-258 passim</td>
</tr>
<tr>
<td>Ptolemaeus, C.</td>
<td>84, 202-258 passim</td>
</tr>
<tr>
<td>Putnam, H.</td>
<td>170, 259</td>
</tr>
<tr>
<td>Quine, W. V. O.</td>
<td>224, 276</td>
</tr>
<tr>
<td>Rado, S.</td>
<td>351</td>
</tr>
<tr>
<td>Raffa, H.</td>
<td>160</td>
</tr>
<tr>
<td>Ramsey, F.</td>
<td>134, 138</td>
</tr>
<tr>
<td>Ramus, P.</td>
<td>249, 256</td>
</tr>
<tr>
<td>Reich, W.</td>
<td>351, 358</td>
</tr>
<tr>
<td>Reichenbach, H.</td>
<td>379</td>
</tr>
<tr>
<td>Renyi, A.</td>
<td>115</td>
</tr>
<tr>
<td>Rheinbold, E.</td>
<td>237, 239</td>
</tr>
<tr>
<td>Rheticus, G. J.</td>
<td>214, 237, 245, 246, 247, 249, 250</td>
</tr>
<tr>
<td>Ritvo, E.</td>
<td>334</td>
</tr>
<tr>
<td>Robertson, T. B.</td>
<td>427</td>
</tr>
<tr>
<td>Rogers, C.</td>
<td>352, 354</td>
</tr>
<tr>
<td>Rosenkranz, R.</td>
<td>218, 219, 220, 221, 222, 223, 224</td>
</tr>
<tr>
<td>Rothmann, C.</td>
<td>255</td>
</tr>
<tr>
<td>Russell, B.</td>
<td>351, 416</td>
</tr>
<tr>
<td>Rynasiewicz, R.</td>
<td>5, 8</td>
</tr>
<tr>
<td>Salmon, W.</td>
<td>168, 169, 370</td>
</tr>
<tr>
<td>Sarbin, T. R.</td>
<td>381</td>
</tr>
<tr>
<td>Savage, L. J.</td>
<td>138, 139</td>
</tr>
<tr>
<td>Schlaifer, R.</td>
<td>160</td>
</tr>
<tr>
<td>Schmideberg, M.</td>
<td>358</td>
</tr>
<tr>
<td>Sears, R. R.</td>
<td>353</td>
</tr>
<tr>
<td>Sellars, W.</td>
<td>36</td>
</tr>
<tr>
<td>Shafer, G.</td>
<td>5, 16, 20, 21</td>
</tr>
<tr>
<td>Shakespeare, W.</td>
<td>135</td>
</tr>
<tr>
<td>Shankland, R. S.</td>
<td>193, 394</td>
</tr>
<tr>
<td>Shelton, H. S.</td>
<td>455, 457</td>
</tr>
<tr>
<td>Silverman, L. H.</td>
<td>353</td>
</tr>
<tr>
<td>Simplicius</td>
<td>204</td>
</tr>
<tr>
<td>Skinner, B. F.</td>
<td>390</td>
</tr>
<tr>
<td>Skyrms, B.</td>
<td>138</td>
</tr>
<tr>
<td>Sneed, J.</td>
<td>271, 300</td>
</tr>
<tr>
<td>Spearman, C.</td>
<td>465, 466</td>
</tr>
<tr>
<td>Spence, D.</td>
<td>319</td>
</tr>
<tr>
<td>Stegmueller, W.</td>
<td>271</td>
</tr>
<tr>
<td>Stone, P. J.</td>
<td>381</td>
</tr>
<tr>
<td>Suppe, P.</td>
<td>271</td>
</tr>
<tr>
<td>Suppes, P.</td>
<td>27, 88, 271</td>
</tr>
<tr>
<td>Theon of Smyrna</td>
<td>212, 213</td>
</tr>
<tr>
<td>Thurstone, L. L.</td>
<td>465</td>
</tr>
<tr>
<td>Tolman, E. C.</td>
<td>390</td>
</tr>
<tr>
<td>Toulmin, S.</td>
<td>269</td>
</tr>
<tr>
<td>Ursus (N. R. Bär)</td>
<td>255, 258</td>
</tr>
<tr>
<td>van Fraassen, B. C.</td>
<td>5, 8, 259, 260, 271, 276, 294, 295</td>
</tr>
<tr>
<td>van Leeuwenhoek, J.</td>
<td>352</td>
</tr>
<tr>
<td>Virduno, B. de.</td>
<td>See de Virduno, B.</td>
</tr>
<tr>
<td>Vlastos, G.</td>
<td>203</td>
</tr>
</tbody>
</table>
Wald, A., 134
Watson, J., 78
Westman, R., 238, 239, 244, 246, 247, 248
Whewell, W., 275, 276, 285, 327
Whitehead, A. N., 381
Williams, P. M., 141

Wimsatt, W., 4, 12
Wolpe, J., 354
Young, T., 279
Zabell, S., 135
Zahar, E. G., 84, 215, 216, 217, 218, 220, 221, 276
Subject Index

Analytic-synthetic distinction, 105
Astronomy: Aristotelian, 205, 273; Babylonian, 202-203; Copernican, 69, 70, 75-76, 80-81, 84, 202, 214-217, 220-221, 223, 225-231, 233-258, 311; Platonic, 203-204; Ptolemaic, 69, 70, 75-76, 80-81, 84, 206-214, 216-217, 220-221, 223, 225-258, 311; Tychonic, 220, 243, 258
Atomic sentences, 111-114
Auxiliary hypotheses, 43: relation to hypothesis being tested, 45-53, 419-420, 467-468
Average likelihood, 75-76, 79, 81-82, 89

Basic proposition: solution of, 28; truth of, 28
Bayes’ Theorem, 74-75, 85, 91, 133-134, 218, 222, 376, 384-386, 454
Bayesian: confirmation theory, 16, 18, 33, 43, 53-55, 62-64, 66-97 passim, 99-100, 103-105, 133-134, 138, 300; subjectivism, 82, 144-145, 218
Behaviorism, 360
Bernoulli process, 139-160
Boolean derivative, 14-15, 24-26
Bootstrap condition, 32, 34, 45-46, 49-50, 52, 56: modified, 47, 48
Bootstrap testing, 4-5, 24-26, 29-32, 35, 43-44, 48, 50-57, 59-61, 63-65, 69-72, 80-81, 96-97, 125-127, 133, 173-176, 180, 224-225, 230-231, 299, 309, 421-422; and computation, 32, 309-310; conditions for, 6-11, 16-17; Hempelian version of, 43-44; and Newton’s argument for universal gravitation, 180-196 passim
Brownian motion, 33
Causal relevance, 324, 332-333, 335, 340-341
Causation: in Freudian theory, 322, 332; and intentionality, 377
Celestial mechanics, 36
Coherence, 100, 104, 106-107, 109-110, 112-119, 136-137, 144
Conditionalization, 17, 100-101, 107, 119, 127, 133, 135, 142, 146-147, 152, 154, 157, 159
Confirmation, 3-5, 17-19, 40, 55, 64-65, 69, 72-74, 77, 83, 85-86, 92, 104, 124-125, 146, 165-166, 174, 176; conjunction criterion, 55-56, 62, 64; consequence condition, 8, 52, 57, 59-61, 92, 96-97; consistency condition, 47, 60, 61; converse consequence condition, 284; degree of, 63-64, 92, 292; equivalence condition, 10; instance, 124-125, 311; necessary and sufficient conditions for, 56, 58-60, 62; and novel predictions, 284-286;
by old evidence, 99; paradoxes of, 72; satisfaction criterion, Hempel’s, 70-72
Convergence, argument from, 372-373, 376-377, 410
Copernican revolution, 202, 216, 218, 220, 224
Credibility, 58, 64-65: and confirmation, 56; and truth, 39
Curve fitting, 81, 192, 427-429

Data base, 29-31, 35, 37-38: alternative, 30
Decision theory, 134, 287-290; and theory acceptance, 168
Deductive model, 299-301, 309, 311, 376
Degree of support, 19, 20
de Finetti’s law of small numbers, 144-145, 153-155
de Finetti’s Lemma, 140-141, 153
Dempster’s Rule, 21
Deoccamization, 93, 94
Diffraction phenomena, Fresnel’s model of, 280-286, 293
Directly measurable quantity, 29-30, 37-38, 46
Disconfirmatory instance, 44, 46-47, 49-50, 71
Discovery, context of, 379

Empirical: adequacy, 40, 168, 260, 262, 273, 294-295; content, 272, 300-301, 311; determination of values, 31-34; equivalence, 34, 165
Epistemic utilities, 87, 88
Epistemology, 56, 165, 308
Evolution, theory of, 413-417, 463, 468
Exchangesability, 144, 154
Expectation, 152-154: operator, 153
Explanation, 171, 271: and confirmation, 147-148, 150, 165; criteria of relevance for, 168; Glymour’s theory of, 165-172 passim; and information, 169-170; theorem, 150-151; by unification, 172
Falsification, 73, 77, 299, 413-415: and Freudian theory, 320-322, 325, 328
Fault detection: in logic circuits, 12-15; probabilistic, 22-24

Gravitation: Newton’s theory of, 95, 102, 180; Thirring’s theory of, 225
Holism: avoidance of, 29: epistemological, 10-11, 56-57, 311
Hypothetico-deductive (H-D) method, 55-64, 71, 86, 91, 179, 185, 189, 196, 228, 230-231, 255, 270, 273, 276-277, 283-284, 299, 317

Ideal gas law, 50-52, 308
Indeterminate quantities, 239-241, 244
Induction: new riddle of, 61, 86, 92; eliminative, 79; global, 110-111; local, 111
Inductive: competence, 3-4; behavior, 62; logic, 384-385
Inference: Bayesian, 464; decision theoretic analysis of, 287-291; direct, 302; prospective, 315, 338, 340; retrospective, 315, 326, 338, 340
Infinitesimals, 158-159
Information, 166-173, 176: loss of, 157-158; storage capacity, 159
Instrumentalism, 234-235, 294: and Copernican astronomy, 233, 235-252,
in early astronomical theories, 203, 205, 210

Intentionality, 377, 410
Irrelevant conjunction, 92, 96

Jeffrey conditionalization, 17-21

Kepler's laws, 80, 102
Knowledge: empirical, 105-106; logical, 106

Kolmogorov axioms, 135-136

Law, 28: as an a priori feature of language, 309-310; of thermal expansion, 304-308
Learning, 157-158: Bayesian model of, 105, 110, 119; conditionalization model of, 106, 108-110, 120, 123; evolving probability model of, 106-109, 119-120, 123
Lindenbaum's Lemma, 140
Logical empiricism, 269

Meaning variance, 389-390
Measurement, errors of, 303-307, 309-311
Michelson-Morley experiment, 84, 193, 195
Model, 78-79: deterministic, 73; probability, 73

Necessity, physical, 271
Newton's Rules of Reasoning, 180, 242
Newton's second law, 28
Newtonian optics, 192-194
Nonstandard analysis, 158

Objective chance, 3
Observational: consequences, 174; content, 209; equivalence, 252-253, 255; evidence, 210; language, 43, 59; predictive content, 303-304, 307-308; uncertainties, 187, 190-191

Omniscience, logical, 100, 104-105, 109, 116-117, 120
Optical phenomena, models of, 279-280, 283

Overdetermination, 70, 84-85

Perception, 357: judgments of, 394-395
Perihelion of Mercury, 81, 84-85, 102-103

Personalism, 137-138
Personality, Freud's theory of, 318
Planets: distances of, 222-223, 239-240, 243-244, 246, 251; motions of, 184-186, 188, 191, 202, 229-230, 256

Poisson distribution, 435-438, 441
Positive test, of a hypothesis, 6-11
Practical reason, primacy of, 138-139

Probability, 16-17, 19, 302-303: axioms of, 3, 20; calculus of, 3-4; conditional, 135-136, 218, 222, 384; defined as expectation, 153; and frequency, 153-154; function, 100, 138-139; and hypothesis testing, 277-278, 282-283; kinematics, 158-159; knowledge of, 3-5; measure, 17, 141-145; model, 73; objective, 88, 142-143; personal, 134-138; physical, 279, 282, 285; posterior, 18-19, 75, 92, 153, 160, 218, 222, 384; prior, 17-20, 53-54, 75, 88, 90-92, 153, 158-160, 218, 222, 384, 386; in psychoanalysis, 375; and simplicity, 76; subjective interpretation of, 3, 142-143; theory of, 101, 107, 140, 145, 155, 274-275, 431

Probasion, 141-155 passim

Projectability, 86
Psychoanalytic inference, 376; and common-sense inference, 360-368; and computers, 381-382; criticism of, 377-379; and historical inference, 368-370; and legal inference, 368; and statistics, 380-381; subjectivity of, 350, 353, 397, 399, 406, 410
Psychoanalytic interpretation, cognitive validity of, 354-355, 359
Psychoanalytic theory, 315, 318-319, 327: clinical validation of, 315, 326-328, 332, 337-345; paranoia, 320-321, 323; testability of, 319-320, 324-325, 343

Random sampling, 160, 306
Random variable, 16, 141
484 Subject Index

Rat Man case, 317, 329-331, 335-336, 340-342
Rational belief: and confirmation, 56, 65; constraints on, 107, 109; and the probability calculus, 62
Rational corpus, 302-303
Rationality, 3-4, 62, 105, 159, 247-248, 269-270, 296, 301: conditions for, 100-101, 107
Realism, 34, 256, 258-262, 273, 276, 294-295: in Copernican astronomy, 232, 235-236, 240-252; in Ptolemaic astronomy, 210-212; versus instrumentalism, 201
Relativity: general theory of, 81, 84-85, 102-103; special theory of, 83-84, 87, 193
Repression: removal of, 356-358; theory of, 328
Research program, 215, 217, 269, 276, 299
Satisficing, 289-290, 295
Schafer belief function, 19-21
Schizophrenia, 366-367
Scientific values, 290-291
Simplicity, 61, 70, 74, 76-77, 82-84, 87, 89, 218-219, 273, 276, 310: evidential force of, 81
State description, 121-123
Statistical mechanics, 9
Sufficient statistic, 159-161
Tally Argument, 326-327, 329, 332
Testability, 33, 35-36, 38, 40, 79, 93: clinical, 317, 329
Theoretical hypotheses, 271-273: testing of, 277-279, 281-287, 293
Theoretical language, 43, 69
Theoretical model, 270-274
Theories: acceptance of, 39-40, 165, 168, 173, 176, 202, 259-260, 291, 302-303; ad hoc auxiliary, 126-127; as a conceptual device, 201-202; auxiliary, 125-127; comparison of, 35, 39-40, 166, 175-176; construction of, 10; content of, 72-75, 77, 79, 87, 89, 93-94; criteria of choice among, 52; and observation, 386-395; possibility space of, 29; sample coverage of, 74, 219; semantic approach to, 27-29; truth of, 201
Theory-laden, 389-395
Truth, 118, 262: a priori, 170; degree of, 76-77, 259-261, 293-294; likelihood of, 39-40; logical, 104-105, 107, 109, 112-113, 117, 119; necessary, 170; as a scientific value, 291
Validity, logical, 29, 118
Verifiability criterion of meaning, 414
John Earman received his doctorate in philosophy at Princeton University in 1968. He has taught at UCLA and the Rockefeller University and is now a professor of philosophy at the University of Minnesota, where he is also a member of the Minnesota Center for Philosophy of Science. He served as editor, with Clark Glymour and John J. Stachel, of Volume VIII in the series Minnesota Studies in the Philosophy of Science, *Foundations of Space-Time Theories*.