The philosophy of mind has acquired new life from recent work in cognitive psychology, linguistics, and the information sciences. Scientists in these fields are addressing questions about thinking, perceiving, and imagining that were once thought to be the exclusive concern of (mentalist) philosophers. An extensive and often technical interchange between philosophers of psychology and cognitive psychologists is under way.

This volume is part of that interchange. Most of the papers were read or previewed at a conference on perception and cognition held at the University of Minnesota in June of 1975, co-sponsored by the Minnesota Center for Research in Human Learning and the Minnesota Center for Philosophy of Science. The rest appear by invitation of the editor.

The papers are grouped roughly according to subject matter. Papers in the first group (chs. 1-7) deal with imagery, mental representation, and perception; the second group (chs. 8-9) with difficulties in psycholinguistic models; the third group (chs. 10-12) with so-called functionalist models of thinking and consciousness. Papers in the fourth group (chs. 13-15) either discuss or present comprehensive theories of the relationship of mind to the rest of the world. The final paper (ch. 16) is both an introduction and a contribution to the theory of psychophysical measurement.

The nonspecialist may find it useful to read the papers in the order presented. The specialist will no doubt impose his or her own order.

Many of the papers deal, in one way or another, with computational, information-processing models of cognitive processes. A
cognizing organism is viewed as a "computer," that is, as the embodiment of a group of computational devices in a physical or biological system. To take a specific example, the multiplication table is a computational device embodied in my brain. More generally, rules (mechanisms) by means of which humans understand language, make deductive and inductive inferences, solve problems, perceive, and fantasize are computational devices embodied in human brains. The major function of the brain-computer is to process and utilize information about the organism and about its physical and social environment. Some of this information may have been genetically stored; but most of it is obtained through the organism's sensory systems, encoded, stored, and reorganized into hypotheses, or plans, that direct the behavior of the organism.

This computational, information-processing approach now dominates cognitive psychology, and has had a profound effect on philosophy of mind. Many philosophers now answer such questions as, "What are images?", "What is a belief?", and "What is consciousness?" as do the psychologists—by locating the cognitive object or process in the latest computer model of cognition. Thus, an image of a geometrical figure may be said to be a special system for storing geometrical information in and retrieving it from a brain. Some philosophers believe that the approach can be expanded to explain motivational, emotional, aesthetic, moral, and all other human and animal mental processes; and that with this expansion the last great metaphysical problem—that of the nature of the relation between mind and body—will have been solved, or dissolved. For a mind will have been shown to be a vastly complicated system of computational devices embodied in a brain; and there is no greater difficulty understanding the relation of the mind thus conceived to brain, than there is in understanding the relation of a computer program driving a computer to the electronic hardware of the computer being driven. Other philosophers, including some of the contributors to this volume, believe that there are insurmountable philosophical and scientific difficulties in the above approach, and that the "solution" it envisages is specious.

It is my hope that, in addition to offering useful papers on some fundamental topics concerning cognition and perception, this vol-
ume will assist in assessing the current status of the problem of mind and body.

I wish to thank Grover Maxwell, J. J. Jenkins, Keith Gunderson, and D. C. Dennett, who provided encouragement and editorial assistance; Caroline Cohen, who helped in assembling and preparing the manuscript; Marilyn Bennett, who prepared the index; and, of course, the contributors.

C. W. Savage
Contents

ON THE FORMS OF MENTAL REPRESENTATION,
by Herbert A. Simon, Carnegie-Mellon University 3

IMAGERY AND ARTIFICIAL INTELLIGENCE, by Zenon W.
Pylyshyn, University of Western Ontario 19

IS THERE MENTAL REPRESENTATION?, by Gilbert Harman,
Princeton University ... 57

MACHINE PERCEPTION: WHAT MAKES IT SO HARD FOR
COMPUTERS TO SEE?, by Walter Reitman, Robert Nado,
and Bruce Wilcox, University of Michigan 65

PERCEIVING, ANTICIPATING, AND IMAGINING,
by Ulric Neisser, Cornell University 89

THE ROLE OF THE PERCEPT IN VISUAL COGNITION,
by Fred Dretske, University of Wisconsin 107

APPROHENDING PICTORIAL EVENTS: AN INSTANCE OF
PSYCHOLOGICAL COHESION, by James J. Jenkins, Jerry
Wald, University of Minnesota, and John B. Pittenger,
University of Arkansas, Little Rock 129

THE PSYCHOLOGICAL UNREALITY OF QUANTIFICATIONAL
SEMANTICS, by Edwin Martin, Jr., Indiana University 165

INFINITE SETS, UNBOUND COMPETENCES, AND MODELS
OF MIND, by Robert Schwartz, Brooklyn College 183

TOWARD A COGNITIVE THEORY OF CONSCIOUSNESS,
by Daniel C. Dennett, Tufts University 201

COMPUTATION AND REDUCTION, by J. A. Fodor,
Massachusetts Institute of Technology 229
TROUBLES WITH FUNCTIONALISM, by Ned Block, Massachusetts Institute of Technology 261

TRYOUTS TOWARD THE PRODUCTION OF THOUGHT, by Leonard Uhr, University of Wisconsin 327

RIGID DESIGNATORS AND MIND-BRAIN IDENTITY, by Grover Maxwell, University of Minnesota 365

AN EVOLUTIONARY NATURALIST REALIST DOCTRINE OF PERCEPTION AND SECONDARY QUANTITIES, by Clifford Hooker, University of Western Ontario 405

ON THE STATUS OF "DIRECT" PSYCHOPHYSICAL MEASUREMENT, by Roger N. Shepard, Stanford University 441

AUTHOR INDEX .. 493

SUBJECT INDEX ... 499
INDEXES
Author Index

Alpern, M., 65
Anderson, H. H., 485
Anderson, J. R., 165, 173, 174
Antrobus, John S., 104
Antrobus, Judith S., 104
Arbib, M. A., 226, 354, 435
Armstrong, D. A., 261, 263, 265, 268, 296
Armstrong, L., 226
Ascherbach, E., 118, 126
Ashby, W. R., 435
Atherton, M., 183, 185
Ayer, A. J., 437

Baggett, 145
Baran, P., 329
Barclay, J. R., 161
Barenfeld, M., 23
Baron, R., 400
Bartlett, F. C., 97, 351
Baylor, G. W., 12, 13, 17, 31, 51
Becker, R., 443
Becklen, R., 95
Beller, H. K., 103
Berg, V., 129
Berlyne, D. E., 438
Bever, T. G., 165, 322
Birdsall, T., 111
Birnbaum, M. H., 485
Block, N., 261, 263, 264, 267, 282, 309, 321
Bobrow, D. G., 22
Bores, S. J., 103
Boring, E. G., 467, 485
Bourne, L. E., 168

Bower, G. H., 165, 173, 174
Bower, T. G. R., 438
Boyd, R., 287
Bradley, M. C., 437
Bransford, J. D., 14, 134, 152, 161
Bremer, C., 129
Brice, C. R., 332
Broadbent, D. E., 211
Bromberger, S., 323
Brooks, L. R., 32
Brownston, L., 129
Bruner, J. S., 22
Bullock, T. H., 485

Cantrall, I., 65
Carnap, R., 176, 178, 368, 369
Carpenter, P. A., 17, 170
Carroll, J. D., 449, 456
Chance, J. E., 136, 159
Chang, J.-J., 450
Chase, W. G., 14, 17, 28, 50, 159
Chisholm, R., 262
Chomsky, N., 165
Church, A., 354
Clark, E., 25, 27
Clark, H. H., 14, 17
Cohen, W., 462
Collins, A. M., 31
Conezio, J., 135, 146
Cooper, L. A., 34, 51
Coriell, A. S., 118, 126
Cornsweet, T. N., 461
Cross, D., 471
Cummins, R., 195, 262, 305
Curtis, E. W., 450

493
Author Index

Davidson, D., 174, 175, 176, 257, 305
Davis, L., 225
Dennett, D. C., 41, 44, 48, 115, 126, 210, 226, 227, 238, 256, 257, 258, 262, 305, 309, 345, 409
Descartes, R., 407
DiLollo, V. A., 486
Doyle, W., 330
Duda, R. O., 329

Ebenholz, S., 467
Eden, M., 351
Eichelman, W. H., 103
Eisenstadt, M., 29
Engen, T., 111
Epstein, W., 107, 124
Eriksen, C., 111
Erman, L. D., 332
Esper, E. A., 133, 134, 135, 142, 159
Estrin, G., 329

Falmagne, J. C., 450, 485
Farley, A. M., 17, 31
Faulconer, 17
Fechner, G. T., 447, 448, 449, 452, 456, 459, 461
Feigl, H., 366, 460
Feldman, J. A., 336
Fennell, R. D., 332
Fennema, C. L., 332
Feyerabend, P. K., 393
Field, H., 261, 319, 323
Fikes, R. E., 336
Fitts, P. F., 32
Fodor, J. D., 179
Foss, D. J., 133, 134
Franks, J. J., 14, 134, 152, 161
Frege, G. 167, 171, 172, 173, 372

Galanter, E., 98, 452, 454, 459, 485
Galler, B. A., 9
Garner, W. R., 111, 135, 142, 145, 159
Garrett, M. F., 165, 179, 210, 211
Gellman, L., 51

Gendron, B., 264
Gessell, A., 438
Gettier, E., 257
Gibson, E., 110, 123, 438
Gibson, J. J., 9, 124, 147, 152, 434
Glass, A. L., 170
Goldstein, A. G., 136, 159
Gombrich, E. H., 23
Goodman, N., 23, 44, 192
Gough, P. B., 129
Graham, C. H., 452, 454
Green, D. M., 448, 485
Gregory, R. L., 23, 410, 434
Grice, H. P., 125, 261
Grimsdale, R. L., 351
Grossman, N., 408
Guirao, M., 455
Gunderson, R., 227, 323, 355
Guttman, N., 450

Haber, N. R., 135, 137, 146, 434
Hake, H., 111
Halle, M., 351
Hanson, A. R., 333
Hanson, N. R., 366
Hanson, V. R., 23
Harman, B., 190
Harman, G., 226, 261, 268
Harnad, S. R., 435
Harris, C. S., 434, 438
Hart, P. E., 329
Hayes, P., 46
Hebb, D. O., 113
Helson, H., 452
Hempel, C. G., 257, 318
Herrnstein, R. J., 467
Highleyman, W. H., 329
Hills, D., 323
Hirst, R. J., 435, 437
Hochberg, J. E., 21, 22, 51, 462, 463
Holyoak, K. J., 170
Hook, S., 190
Hooker, C. A., 405, 408, 421, 439
Hooker, M., 227
Horwich, P., 323
Howard, I. P., 36, 47
Hubel, D. H., 90
Hull, C. L., 460
Hume, D., 218, 380
Hummel, D. D., 37
Hunt, E. B., 330
Inhelder, B., 25

James, W., 226, 329, 334, 346, 356, 360
Jamison, W., 37
Jenkins, J. J., 130, 134, 146
Jerison, H. J., 435
Johansson, G., 110, 132
Julesz, B., 20, 21, 203
Just, M. A., 17, 170

Kabrinsky, L., 434
Kalish, H. I., 450
Kalke, W., 264
Kant, E., 20
Kareev, Y., 29
Katz, S. J., 187
Kavanagh, J. F., 129
Keele, S. W., 134
Keeney, T., 134
Kerr, N., 102
Kerwin, J., 76, 77
Kessel, F. S., 134
Kiang, N. Y.-S., 485
Kilpatrick, D. W., 450
Kilpatrick, F. P., 210
Kim, J., 264, 265, 319
Kleene, S. C., 354
Klemmer, E. T., 449
Klüver, 123
Knuth, D. E., 9
Kochen, M., 330
Kosslyn, S. M., 34, 103
Kouotch, D., 104
Kraft, R., 146, 147
Krantz, D. H., 65, 464, 481, 484, 485, 486
Kruskal, J. B., 449
Kuhn, T., 308

LaBerge, D., 129
Lackner, J. R., 210, 211

Land, E. H., 463
Larkey, L., 129
Lawrence, K. A., 101
Leibniz, G., 45
Levitt, W. J. M., 485
Levine, M. V., 449
Lewis, D. K., 177, 261, 263, 265, 268, 277, 296, 300, 318, 319, 320, 321
Lindsay, P. N., 89, 90
Littman, D., 95
Locke, D., 261
Locke, J., 219
Luce, R. D., 450, 452, 454, 481, 485
Lycan, W., 261, 266, 282, 323

McCann, J. J., 463
McCarrick, N. S., 161
McCarthy, J., 46
McCulloch, W. S., 435
McGill, W., 454
McGovern, K., 129
Mach, E., 328, 347, 348, 357, 360
MacKay, D. M., 351, 435, 459, 464
Malcolm, N., 188
Marr, D., 21
Marrill, T., 352
Martin, E., Jr., 172, 176
Massaro, D. W., 89
Mates, B., 392
Mattingly, I. G., 129
Maxwell, G., 368, 395, 400, 402, 403
Meehl, P. E., 402
Melzack, R., 307, 309
Metzler, J., 17, 51, 226
Michotte, A., 23, 132
Middleton, W. E. K., 443
Miller, G. A., 98, 122, 125, 461
Minsky, M. A., 67, 73, 203, 209, 226, 305, 322, 351, 354
Moran, T. P., 17, 31, 50
Morgenbesser, S., 183, 188
Mountcastle, V. B., 485
Mucciolo, L. F., 264
Munson, J. H., 330
Nagel, T., 188, 201, 225, 258, 281, 305, 401
Naylor, W. C., 329
Neely, R. B., 332
Author Index

Neisser, U., 70, 72, 118, 130, 208, 209, 210, 225, 351, 352, 343
Nelson, R. J., 261, 267
Newell, A., 9
Nicholas, J., 420
Nilsson, N. J., 336
Norman, D. A., 89, 90
Novak, G. S. Jr., 15, 17
Nuwer, M., 400

O’Dell, C., 170
Oyamo, T., 454

Pachella, R., 65
Palvio, A., 102, 226
Palmer, S. E., 24, 29, 51
Pattie, F. A., 463
Paulos, M. A., 450
Peirce, C. S., 348, 349, 357, 358, 360
Perkel, D. H., 485
Piaget, J., 25, 47, 97, 131, 425, 438
Pickersgill, M. J., 463
Pierce, J. R., 125
Pitcher, G. A., 111, 261
Pittenger, J. B., 130
Place, U. T., 230
Poggio, G. F., 485
Pollack, I., 453
Pomerantz, J. R., 34
Popper, K., 400
Pores, E. B., 455
Posner, M. I., 89, 103, 134
Postman, L., 135
Potter, 17
Powers, W. T., 464
Pribram, K. H., 98, 399, 400, 435
Price, H. H., 437
Pylyshyn, Z., 226

Quillan, M. R., 31
Quine, W. V., 38, 45, 256, 257, 258

Raphael, B., 46
Rawls, J., 205
Reddy, J. R., 332
Reed, S. K., 37

Reitman, J., 65
Reitman, W., 76, 77
Rey, G., 323
Riemersma, J. B., 485
Riseman, E. M., 333
Robinson, H. J., 411
Rock, I., 27, 50, 108, 434, 438, 463, 467
Rollins, C. N., 420, 438
Rorty, R., 393
Rosenberg, J., 226
Rosenberg, S., 14
Rosenthal, D., 183
Ross, J., 101, 486
Rule, S. J., 450
Rundel, B., 115
Rushton, W. A. H., 485
Russell, B., 168, 169, 373, 375, 380, 386, 388, 402
Ryle, G., 225, 227

Samuels, S. J., 129
Savage, C. W., 183, 452, 481
Schank, R. C., 165
Scheffler, I., 58
Schlick, M., 388
Schwartz, R., 197
Seaman, G., 462, 463
Seeger, C. M., 32
Segal, E. M., 133, 134
Selfridge, O. B., 482
Sellars, W., 226, 227, 258, 261, 402, 407, 437, 439
Sendon, N. H., 410
Shaffer, J., 402
Shankweiler, D. P., 161
Shaw, R. E., 129, 130, 134, 135, 142
Shoemaker, S., 225, 261, 263, 268, 277, 296, 298, 299, 304, 321
Shrimpton, N., 449
Siegel, J. A., 463
Simon, H. A., 9, 10, 14, 17, 23, 27, 46, 50, 159, 435
Singer, J. L., 104
Skinner, B. J., 454
Sloman, A., 40
AUTHOR INDEX

Smart, J. J. C., 230, 261, 265, 268, 393, 407, 437
Snyder, F. W., 410
Soli, S., 129
Sommerhoff, G., 435
Sperling, G., 118, 126
Springer, L., 65
Standing, L., 135, 137, 146
Stcherbatsky, T., 335, 360
Steinfeld, G. J., 110
Sternberg, S., 485
Stevens, S. S., 441, 443, 444, 445, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 464, 467, 469, 471, 475, 481, 482, 483
Stich, S., 65
Strange, W., 129, 134, 161
Strawson, P., 373
Suppes, P., 484
Swets, J. A., 111, 448

Tanner, W., 111
Tarski, A., 174, 175
Taylor, R. I., 103
Teghtsoonian, M., 455
Thomas, H., 37
Thomas, W. J., 408
Thomason, R. H., 179
Thouless, R. H., 455
Thurstone, L. L., 447, 448, 449
Titiccher, 38
Torgerson, W. S., 450, 452
Towster, E., 330
Treibel, W., 462, 463
Treisman, M., 452, 454, 455, 459, 485
Tukey, J., 485
Turing, A. M., 354

Uhr, L., 107, 327, 329, 332, 337, 339, 352
Unger, S. H., 329
Utall, W., 65
Veit, C. T., 485
Verbrugge, R. R., 152, 153, 157, 159, 161
Vernon, M. D., 351
Vossler, C., 332
Walk, R. D., 438
Waltz, D., 17
Ward, W. D., 463
Warren, R. W., 122, 454, 455
Wason, P. C., 168
Welford, A. T., 450
Wellman, 134
Werner, G., 485
Wickelgren, W. A., 450, 479
Widin, G., 129
Wiesel, T. N., 90
Wiggins, D., 261, 266
Wilcox, B., 77
Williams, H. A., 333
Wilson, B. E., 134, 135, 142
Winograd, T., 72, 165
Winston, P. H., 332, 336
Wittgenstein, L., 41, 44, 45, 225, 454
Woods, W., 47
Woodworth, R. S., 450
Wurthman, M., 129

Zimmer, H., 337, 351, 360
Zinnes, J. L., 484
Zobrist, A. L., 332
Absent Qualia Argument, and Kripke's argument against materialism, 285-95, 309
Access: computational, 203-5, 211; and consciousness, 202-4; direct, to mental processes, 217; paths, 32; public, 204; to remembered knowledge, 69, 208; to structures during sentence comprehension, 165; to uninterpreted information, 203
Analogue schemes, and semantic learning, 192
Anticipation: and eye movement, 95-96; and images, 103; and information pickup, 94, 97, 100
Artificial intelligence: and consciousness, 350, 360; as model of natural intelligence, 327-28, 355; organizational scheme for, 87; perceptual components for, 74; and primitive feelings, 348-49; and representation, 15, 30, 34, 356-57; robots, 336-41; and thinking, 357-58, 360; and universal Turing machine, 354
Attention: and allocation of cognitive resources, 209; conscious and unconscious, 209; to listening channels, 210-11; and short-term memory, 350
Behaviorism: and functionalism, 261-64, 268, 303-4; inadequacy of, 229-35; and mental states, 61; reduction of psychological theories, 229, 235, 243-55
Brain event. See Event
Bridge formulae, in reductionism, 233-34, 243, 246, 253
Causal network, and mind-brain identity theory, 384-85, 387
Causal structure, and mind-brain identity theory, 384-85, 387
Causation: Hume's analysis of, 218; perceived relation of, 23
Cognitive map: and perceptual anticipation, 101-2; and spatial schema, 96, 99, 100
Cognitive transforms, in SEER, 327, 337-42
Competences: cognitive, 189; human acquisition of unbounded, 183-84; linguistic, 184-90, 196
Complexity: conceptual, 29, 31; descriptive, 37; and perception, 352
Complexity hypothesis: and counterfactuals, 177; of sentence processing, 166-67, 169-76
Components: of language processing, 165-66; problem-solving, 210; and sense of a sentence, 172
Comprehension: of language, 173-74; of sentence, and semantic complexity, 166, 173
Concept: figural, 25; as information-processing structure, 408, orientation-independent, 27
Consciousness: and awareness of sensory states, 432; cognitive model of, 224; in evolutionary naturalist realist theory, 408-10; and perception, 414, 422-23; phenomenological, 201; theories of, 201-2
Constancy hypothesis, in perception, 110
Detectors: edge-, 114; movement-, 114; in perception, 91; retinal, 90
Distance hypothesis, of sentence processing, 167–67, 170–78

Epistemology, and empirical psychology, 213–14
Equivalence: computational, 5, 7, 10–13, 16; informational, 4, 14–16
Event: apprehension through pictures, 139–40, 157–59; brain, 380–82; invariants as defining properties of, 145, 157–60; mental, 374, 385, 390–99; nature of, 143, 154–55; and personal knowledge, 150, 159; physical, 374, 385, 390–98; as primary unit in perception or analysis, 130, 142; structure of, 151, 158, 161, 221; visual, 131–33, 145
Event ontology, and mind-brain identity theory, 385–86
Evolution: and language ability, 409; and sensation, 407, 426
Expectation: in frame system theory, 68–69; in perception, 99

Feature detection, in simulated cognitive system, 330
Filtering theory: and attention, 211; and filtering mechanism in visual perception, 95
Frame system theory, 67–68, 70–71
Functionalism: machine, 276–78, 277–85; theory of mind, 205, 261–318
Fusion: of verbal expressions, 241–54; in visual perception, 144–45

Gestalt psychologists, 47
Go: playing program, 65, 67, 74–78, 85.
See also Web perception system

Hallucinations: in evolutionary naturalist realist theory, 406; and perception, 97, 104, 411
HAM, theory of semantic memory, 173–74
Human chauvinism, and functionalism, 310–18

Identity relation, and rigid designators, 371–83, 388

Illusion, in evolutionary naturalist realist theory, 416–19, 427–28
Image: corresponding to percept, 89; iconic, 350; indeterminateness of, 41–42; mental, 90, 100, 219; optical, 95; and rapid perception, 103; rotation, 219–21; in simulated cognitive system, 329, 342; spatially organized, 32–33; as vehicle of information in cognitive system, 214; visual, 90, 95, 118
Imagery: in children, 25; cognitive map in, 101; eidetic, 72; iconic, 29, 119–20; mental, 89, 99, 201–2; and mnemonic devices, 102; models of, 32–33; visual, 9–10, 28–29
Imagination: and perception, 90; and vision, 69
Infinity, and theories of language, 183–86, 190, 196, 199
Information storage, intelligent and non-intelligent, 115
Information theory, and cognitive systems, 214
Inner eye. See Mind’s eye
Intelligence: human, 66, 355; natural, 30.
See also Artificial intelligence
Interpretation: format necessary for, 97; mental states in, 61; perceptual, 24; semantic function, 43–44, 47

Language: artificial, 187; mathematical theory of, 179; natural, 13–14, 59, 162, 165, 186
Learning, and mental processes, 235–39, 241

Materialism: inadequacies of theory, 365–66, 394–96; and naturalistic account of mind, 420; and reference to consciousness, 408
Memory: associative, 13, 16; computer, 3; external, 73; frame systems in, 68; human, 3, 21, 28; iconic, 118, 208, 350–51; long-term, 19, 121, 351; not images, 146; short-term, 121, 350
273-77, 281-85, 293-99, 300-303, 306, 310, 314; and mental representation, 57-58, 61, 63; as term in psychological theory, 268
Mind-body identity theories, 230-31, 248, 365-69, 371, 378, 383-401; assumed in evolutionary naturalist realist theory, 409; and event ontology, 386; and functionalism, 261, 265-66
Mind’s eye, 11, 21, 38, 218-22, 408
Necker Cube, 5, 10
Nonmaterialist physicalism, and mind-brain identity theory, 365-66
Opaque contexts: and mind-body identity theory, 231; and truth definitions, 175-77
Operations: cognitive, 35-37; primitive, 8, 32; semantic, 172
Percept: and anticipatory schema, 93, 98; in artificial cognitive system, 342; causal antecedents of, 121; complexity, and artificial intelligence, 353; and corresponding image, 89; definition, 110, 117-18; and internal state, 108-10; and perceptual components, 74; underdetermination of, 110-12; and visual system, 122
Perception: approaches to, 327-34; and cognition, 20, 37, 121-24; of events, 160; evolutionary naturalist realist theory of, 405-34; function, 115, 117-18; Gestalt as unit of visual, 130; human, 67, 72, 74, 87, 92, 94; machine, 67, 71, 86-87, 341-43, 349, 351-53; and mental imagery, 89; and percept, 109; and recall, 69; relativity of stimulus intensity, 461-63, 479-80; selective, 98; successive phases in, 99; visual, 68, 90-94
Perceptual components, 65-67, 70
Perceptual cycle, and anticipation, 94-97
Perceptual phenomena, and organism’s interaction with environment, 108
Perceptual process. See Process
Perceptual schemata: and available information, 97; and cognitive map, 101; form and content in, 98; inconsistent with physical laws, 36-37; as plans, 92
Perceptual state: and behavior, 111; and conscious experience, 112; and internal state, 114
Physicalism, and functionalism, 264-72
Primitive expressions, finite in a learnable language, 191
Primitives, computational, 32, 49
Process: cognitive, and perception, 352; mental, 184, 262, 345-46; mental activity as computational, 183; perceptual, as selection and abstraction, 410; two-component, of sentence comprehension, 165-66
Properties, distinction between primary and secondary, 420-34
Psychophysics: limitations of cross-modality matching, 457-460, 469-74; limitations of direct magnitude estimation, 453-57
Qualia, as psychofunctional states, 304-9, 314
Quantification theory: and canonical notation, 173, inadequate as general semantic theory, 167; and number sentences, 169; and predictions of semantic complexity, 171; and semantic theories, 167, 174
Ramsey sentence: of a psychological theory, 268-77; 284, 302-3; in scientific theories, 369
Recall: and perception, 69; verbal, process in, 130
Reductionism. See Behaviorism
Reference-fixing postulate, and rigid designator, 368-69
Relation theory, in psychophysics, 464-81
Representation: analogical, 20, 34-35, 38, 40; associational, 12-13, 16; by hardware systems, 7, 329; internal, 10, 14, 19, 27, 30, 250-51; mental, 7, 28, 30, 35, 57-62; nonvisual, 29; of physical objects, 31; semantic, 61-62, 165-178; symbolic, 7, 33, 71; temporarily constructed, 31
Representational medium, 45-46
Representational structure, 31, 40-41
Retrieval: of an element, 32; of images, 23
Rigid designators: and identity statements, 285; and mind-brain identity theory, 366-83, 387, 394
Rules, necessary for competence in language, 187-90

SEER: and consciousness, 346-47; knowledge and belief in, 343-44; simulated cognitive system, 327, 334-42, 352, 359
Semantic learning, and fixed common property, 198
Semantic primitive, in a natural language, 191, 194-97
Semantic theory of language: and necessary truth, 177; and possible worlds, 176-78; predictions of quantificational, 170-71
Sense data, and theories of perception, 406-7, 411, 416
Sentence comprehension, models of, 165
Set theory, contained in semantic meta-language, 169-70
Simulated cognitive systems. See SEER
Symbol: structure, 31; systems, 32-33
Syntax: adequate, 165; preservation under reductionism, 234, 244

Tachistoscope: as experimental tool, 94; and perceptual experience, 210
Transformation: between transducer and memory, 22; effect of rate, 158; in frame system theory, 67; and objects, 131-32; orbiting technique in, 144, 155
Transformational grammars, and adequate syntax, 165
Turing machine, and functionalist theory, 263-67, 271, 278, 280-84, 290
Web perception system, in Go playing program, 78-86